Mão Dada

Projeto Mao Dada is an independent research project that aims to redefine and redesign prosthetic devices for children. 

What is it that children really want from their prosthetic devices? For two years I lead a research team that worked to answer this question. Spoiler: we don’t have an answer yet, but I believe we are on a promising path. 

Vine, 12 years old

In Brazil today, prosthetics are a luxury most people can’t afford. Ninety percent of the physically disabled population would have to give up a year’s income to purchase the simplest devices. Many people in low-income households are resigned to not using any prostheses, facing bullying and compromising their health and mobility. For children, it is even more difficult because they are growing and therefore need prosthetics that can be replaced and modified as they grow. Making matters worse, there is no governmental subsidy for child prosthetics.


Given that context, I was completely fascinated when I discovered that people were 3D printing these devices. 


What started as a volunteering activity -- printing open-source files and collaborating with a local rehabilitation clinic that focuses on poor populations -- pivoted into the Projeto Mao Dada when I handed Vine his first prosthetic. 


At that moment, I understood that there is a fundamental uniqueness when making upper-body prosthetic devices for kids. When dealing with lower-body devices, the function is of the essence, but in upper-body, there is an enormous psychological factor that comes into play.


That changed everything. 


Giving Vine a prosthetic was not about restoring motor functions. He was born without an arm so he didn’t really miss it. What he missed and wished for was to be treated like a normal kid and not the kid without an arm.

Design Process and breakthrough:

Making Modular Prosthetics

Bodily proportions are unique and mutable

We realized that one of the challenges with the open-source files available was that they assumed that every user had the same bodily proportions, which is not true. In order to alter these proportions, one would now need someone who was knowledgeable in CAD and had access to the necessary software. This added a layer of complication to the process as a whole and limited its potential for impact. In order to address this, we mapped rates and areas of growth in children and decided to pursue a five-part design. This enables anyone to adjust the device without the need for specialized software or skills. 

Partial Replacements - faster and cheaper

Another important insight we uncovered during user interviews was their frustration with device maintenance. Users repeatedly addressed the need for a full replacement when a minor component malfunctioned, which resulted in increased (and often unsustainable) costs. Once again, by having separate components in our design, we would be able to perform a partial replacement which would be cheaper, simpler and faster. 

Longer Product Life - economic sustainability

Partial replacements also contribute to a longer product life making it economically and ecologically sustainable. The same prosthetic can now keep up with a child’s growth by undergoing minor modifications.

Economies of Scale - financially accessible

The fact that the same base design can be used in many users makes its production a lot cheaper and simpler by allowing for economies of scale. That would enable clinics to keep stock of our product and assemble then by demand drastically reducing the total time spent on this process as well as the costs of importing devices. 

Vine wearing the first device we printed for him.

Vine and I at the lab fitting our V3

When I realized the potential of this project, I was also very aware of the diverse sets of skill sets needed to make it successful. I managed to bring together a team of passionate people that covered the areas of finance, engineering, and marketing. But of course, this “we” also encompasses the doctors, occupational therapists and other healthcare professionals that were priceless in their input, the over 150 people who supported our crowdfunding campaign and helped raise over $10,000 USD for research and, of course, Vine and his mother, who were invaluable participants in every iteration and development, not just contributing with insights but taking an active stance throughout development process.

And who is “we” that I keep mentioning?

I believe that one of the greatest values in this experience was seeing first hand the power of uncovering and addressing an underlying need. We set out to make prosthetics that were function guided, but our greatest success was having Vine himself taking on tools to add to his prosthetic and claim his place as the leader in the design process. Once again, we were designing for him, our presence was simply as enablers. More than human-centered design, we were engaging in true co-creation and, when given a voice, these kids shine. 

Where does the project stand now?

Before my coming to Stanford, we were able to develop a prosthetic that Vine could put on and take off independently and that had improved grip to his arm. In parallel, we are working with a law firm in order to understand where we stand in terms of patents and licences.

Witnessing such a powerful psychological process and how impactful yet potentially simple our solution was, motivates me to continue designing where resources lack and making these limitations fuel for our creativity.